On a Class of Knots with Fibonacci Invariant Numbers

نویسنده

  • J. C. TURNER
چکیده

This paper describes how a subclass of the rational knots* may be constructed sequentially., the knots in the sequence having 19 29 ..., i s ... crossings. For these knots, the values of a certain knot invariant are Fibonacci numbers, the i knot in the sequence having invariant number Fi . The knot invariant has a wide number of interpretations and properties, and some of these will be outlined9 particularly in relation to knots in the constructed class, The class will be called the Fibonacci knot-class. A generalization of this class will be introduced and briefly discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coefficient Bounds for Analytic bi-Bazileviv{c} Functions Related to Shell-like Curves Connected with Fibonacci Numbers

In this paper, we define and investigate a new class of bi-Bazilevic functions related to shell-like curves connected with Fibonacci numbers.  Furthermore, we find estimates of first two coefficients of functions belonging to this class. Also, we give the Fekete-Szegoinequality for this function class.

متن کامل

A Class of Convergent Series with Golden Ratio Based on Fibonacci Sequence

In this article, a class of convergent series based on Fibonacci sequence is introduced for which there is a golden ratio (i.e. $frac{1+sqrt 5}{2}),$ with respect to convergence analysis. A class of sequences are at first built using two consecutive numbers of Fibonacci sequence and, therefore,  new sequences have been used in order  to introduce a  new class of series. All properties of the se...

متن کامل

ar X iv : m at h / 02 10 17 4 v 1 [ m at h . G T ] 1 1 O ct 2 00 2 GENERATING FUNCTIONS , FIBONACCI NUMBERS AND RATIONAL KNOTS

We describe rational knots with any of the possible combinations of the properties (a)chirality, (non-)positivity, (non-)fiberedness, and unknotting number one (or higher), and determine exactly their number for a given number of crossings in terms of their generating functions. We show in particular how Fibonacci numbers occur in the enumeration of fibered achiral and unknotting number one rat...

متن کامل

A Sequence of Degree One Vassiliev Invariants for Virtual Knots

For ordinary knots in 3-space, there are no degree one Vassiliev invariants. For virtual knots, however, the space of degree one Vassiliev invariants is infinite dimensional. We introduce a sequence of three degree one Vassiliev invariants of virtual knots of increasing strength. We demonstrate that the strongest invariant is a universal Vassiliev invariant of degree one for virtual knots in th...

متن کامل

Energy of Graphs, Matroids and Fibonacci Numbers

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1986